Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(4): e0164923, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38548704

RESUMEN

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Hepatitis Viral Humana , Humanos , Virus de la Hepatitis E/genética , Factores Inmunológicos , Proteína Disulfuro Isomerasas/genética , Tiorredoxinas/genética , Virión/metabolismo
2.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38271227

RESUMEN

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Anticuerpos de Dominio Único , Vacunas Virales , Animales , Humanos , Ratones , Proteínas de la Cápside , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Epítopos , Porcinos , Vacunas Virales/química , Vacunas Virales/inmunología
3.
J Biol Chem ; 298(12): 102709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402446

RESUMEN

Circulation of influenza A virus (IAV), especially within poultry and pigs, continues to threaten public health. A simple and universal detecting method is important for monitoring IAV infection in different species. Recently, nanobodies, which show advantages of easy gene editing and low cost of production, are a promising novel diagnostic tool for the monitoring and control of global IAVs. In the present study, five nanobodies against the nucleoprotein of H9N2 IAV were screened from the immunized Bactrian camel by phage display and modified with horseradish peroxidase (HRP) tags. Out of which, we determined that H9N2-NP-Nb5-HRP can crossreact with different subtypes of IAVs, and this reaction is also blocked by positive sera for antibodies against different IAV subtypes. Epitope mapping showed that the nanobody-HRP fusion recognized a conserved conformational epitope in all subtypes of IAVs. Subsequently, we developed a nanobody-based competitive ELISA (cELISA) for detecting anti-IAV antibodies in different species. The optimized amount of coating antigen and dilutions of the fusion and testing sera were 100 ng/well, 1:4000, and 1:10, respectively. The time for operating the cELISA was approximately 35 min. The cELISA showed high sensitivity, specificity, reproducibility, and stability. In addition, we found that the cELISA and hemagglutination inhibition test showed a consistency of 100% and 87.91% for clinical and challenged chicken sera, respectively. Furthermore, the agreement rates were 90.4% and 85.7% between the cELISA and commercial IEDXX ELISA kit. Collectively, our developed nanobody-HRP fusion-based cELISA is an ideal method for monitoring IAV infection in different species.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Anticuerpos de Dominio Único , Animales , Humanos , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Reproducibilidad de los Resultados , Porcinos , Aves de Corral
5.
Front Microbiol ; 13: 956561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051768

RESUMEN

Newcastle disease (ND) is an acute and highly contagious infectious disease found in poultry. Although commercial ND virus (NDV) vaccines are universally used, some case reports persistently documented vaccination failure. Therefore, novel strategies are still required to control the occurrence of the disease in chickens. Recently, nanobodies (Nbs), which have the advantages of small molecular weight and low production costs, have been shown to be promising therapeutics against viral infection. In the present study, a total of 16 Nbs against NDV nucleocapsid protein (NP) were screened from two libraries against NDV using phage display technology. Of the 16 screened Nbs, eight were prevented from binding to NDV NP protein through administering positive chicken sera for anti-NDV antibodies, indicating that the epitopes recognized by these eight Nbs were able to induce the immune response after the chickens were infected with NDV stock. Subsequently, transfection assay, construction of recombinant DF-1 cells capable of expressing different nanobodies and viral inhibition assay were used to screen the nanobodies inhibiting NDV replication. The results demonstrated that Nb18, Nb30, and Nb88 significantly inhibited the replication of Class I and different genotypes of Class II NDV strains in DF-1 cells when they were expressed in the cytoplasm. Collectively, these nanobodies provided new tools for researching the functions of NDV NP protein and may be used as a novel strategy for designing drugs against NDV infection in chickens.

6.
Vet Microbiol ; 265: 109331, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34999311

RESUMEN

Hepatitis E virus (HEV), a zoonotic virus, infects many animal species, including humans. Capsid proteins of human, swine, rabbit and avian HEVs share 48 %-100 % amino acid identity. In the present study, antigenic cross-reactivity among human, swine, rabbit and avian HEV capsid proteins were analyzed in detail using indirect and blocking enzyme-linked immunosorbent assays (ELISAs). The C-terminal 268 amino acids of genotype 1 human, genotype 4 swine, genotype 3 rabbit and genotype B3 avian HEV capsid proteins served as coating antigens for ELISA. Hyperimmune rabbit antisera (against four HEV capsid proteins) and human, pig, rabbit and chicken clinical sera were as primary antibodies. Closely correlated and statistically indistinguishable results were obtained for detection of anti-HEV antibodies in human and pig sera using human, swine and rabbit HEV capsid proteins as coating antigens. Moderately correlated differences in detection of anti-HEV antibodies in rabbit sera were obtained using the three capsid proteins. Statistically significant differences with no correlations were obtained for anti-HEV antibodies detection in chicken sera between avian HEV capsid protein and human, swine and rabbit ones. Blocking ELISA results demonstrated that two common epitopes among the four species HEVs were immunodominant in avian HEV, but were non-immunodominant in human, swine and rabbit HEVs. Nevertheless, three epitopes common to human, swine and rabbit HEVs were all immunodominant epitopes for the three species HEVs. Collectively, these results demonstrate that anti-HEV antibodies in human and pig sera can be detected using human, swine and rabbit HEV capsid proteins. By contrast, for optimal detection of anti-HEV antibodies in rabbit and chicken sera, the respective rabbit and avian HEV capsid proteins should be used. These results provide insights to guide future development of serological assays for diagnosing HEV infections in various animal species.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Hepevirus , Enfermedades de los Porcinos , Animales , Antígenos Virales , Aves , Proteínas de la Cápside/genética , Hepatitis E/veterinaria , Virus de la Hepatitis E/genética , Hepevirus/genética , Humanos , Conejos , Porcinos
7.
Appl Microbiol Biotechnol ; 104(24): 10725-10735, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33159543

RESUMEN

Canine distemper virus (CDV) infection causes mass mortality in diverse carnivore species. For effective virus surveillance, rapid and sensitive assays are needed to detect CDV in field samples. In this study, after BABL/c mice were immunized with recombinant CDV-fusion (F) protein, monoclonal antibodies (mAbs) against recombinant CDV-F protein (designated 1A5, 1A6, and 7D5) were produced using traditional hybridoma cell technology. Next, capture antibody (1A6, 800 ng/well) and horseradish peroxidase (HRP)-conjugated detection antibody (HRP-7D5, 1:100, 500 ng/well) were used in a double monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) for CDV detection after optimization of both mAb amounts per well using a checkerboard titration test. Based on sandwich ELISA test results for 120 known CDV-negative samples, the cutoff value for a positive result was set to an OD450 nm value ≥ 0.196. As compared with test results obtained from commercial immune colloidal gold test strips, the low limits of detection for the two assays were revealed to be 100 TCID50 per 100 µL. In addition, the sandwich ELISA agreed 100% and 96.4% with commercial immune colloidal gold test strips when testing serum and stool samples. The sandwich ELISA assay provided statistically similar CDV detection. Thus, the sandwich ELISA developed here to detect CDV in fecal and serum samples provided good sensitivity, high specificity, and good reproducibility and should serve as an ideal method for large-scale surveillance of CDV infections in carnivores. KEY POINTS: • Three CDV mAbs that recognized different epitopes and bound to virion were generated. • The sandwich ELISA based mAbs to detect CDV in fecal and serum samples was developed. • The sandwich ELISA is an ideal method for detecting CDV infections in the field.


Asunto(s)
Virus del Moquillo Canino , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Ratones , Reproducibilidad de los Resultados
8.
J Nanobiotechnology ; 18(1): 44, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169061

RESUMEN

BACKGROUND: Traditional sandwich enzyme-linked immunosorbent assay (ELISA) using polyclonal and monoclonal antibodies as reagents presents several drawbacks, including limited amounts, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies can be easily expressed with different systems and fused with several tags in their tertiary structure by recombinant technology, thus offering an effective detection method for diagnostic purposes. Recently, the fenobody (ferritin-fused nanobody) and RANbody (nanobody-fused reporter) have been designed and derived from the nanobody for developing the diagnostic immunoassays. However, there was no report about developing the sandwich ELISA using the fenobody and RANbody as pairing reagents. RESULTS: A platform for developing a sandwich ELISA utilizing fenobody as the capture antibody and RANbody as the detection antibody was firstly designed in the study. Newcastle disease virus (NDV) was selected as the antigen, from which 13 NDV-specific nanobodies were screened from an immunized Bactrian camel. Then, 5 nanobodies were selected to produce fenobodies and RANbodies. The best pairing of fenobodies (NDV-fenobody-4, 800 ng/well) and RANbodies (NDV-RANbody-49, 1:10) was determined to develop the sandwich ELISA for detecting NDV. The detection limits of the assay were determined to be 22 of hemagglutination (HA) titers and 10 ng of purified NDV particles. Compared with two commercial assays, the developed assay shows higher sensitivity and specificity. Meanwhile, it exhibits 98.7% agreement with the HA test and can detect the reference NDV strains belonging to Class II but not Class I. CONCLUSIONS: In the presented study, the 13 anti-NDV nanobodies binding the NDV particles were first produced. Then, for the first time, the sandwich ELISA to detect the NDV in the different samples has been developed using the fenobody and RANbody as reagents derived from the nanobodies. Considering the rapidly increasing generation of nanobodies, the platform can reduce the cost of production for the sandwich ELISA and be universally used to develop assays for detecting other antigens.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Anticuerpos de Dominio Único/inmunología , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Camelus/inmunología , Pollos , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedad de Newcastle/virología , Sensibilidad y Especificidad , Virión
9.
Poult Sci ; 99(3): 1287-1296, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32115022

RESUMEN

Hens of a commercial Hy-line brown layer flock in China exhibited increased mortality and decreased egg production at 47 wk of age. From 47 to 57 wk, average weekly mortality increased from 0.11 to 3.0%, and egg production decreased from 10 to 30%, with a peak mortality rate (3.0%) observed at 54 wk of age. Necropsy of 11 birds demonstrated tissue damage that included hepatitis, liver hemorrhage, rupture, and/or enlarged livers. Microscopic liver lesions exhibited hepatocytic necrosis, lymphocytic periphlebitis, and myeloid leukosis. While no bacteria were recovered from liver and spleen samples, avian hepatitis E virus (HEV) RNA was detected in all 11 tested hens by nested reverse transcription-polymerase chain reaction. Of these, subgroup J avian leukosis virus (ALV-J) proviral DNA was detected in 5 hens by PCR. Alignments of partial ORF2 gene sequences obtained here demonstrated shared identity (76 to 97%) with corresponding sequences of other known avian HEV isolates. Env sequences of ALV-J isolates obtained here shared 50.1 to 55% identity with other ALV subgroups and 91.8 to 95.5% identity with other known ALV-J isolates. Phylogenetic tree analysis of selected sequences obtained here grouped an avian HEV sequence with genotype 3 HEV and assigned an ALV-J sequence to a branch separate from known ALV-J subgroups. Immunohistochemical results confirmed the presence of avian HEV and ALV-J in livers. Therefore, these results suggest that avian HEV and ALV-J co-infection caused the outbreak of hepatitis and liver hemorrhagic syndrome observed in the layer hen flock analyzed in this study.


Asunto(s)
Leucosis Aviar/epidemiología , Coinfección/veterinaria , Brotes de Enfermedades/veterinaria , Hepatitis Viral Animal/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Infecciones por Virus ARN/veterinaria , Animales , Leucosis Aviar/virología , Virus de la Leucosis Aviar/fisiología , Pollos , China/epidemiología , Femenino , Hepatitis Viral Animal/virología , Hepevirus/fisiología , Hepatopatías/epidemiología , Hepatopatías/veterinaria , Hepatopatías/virología , Enfermedades de las Aves de Corral/virología , Infecciones por Virus ARN/epidemiología , Infecciones por Virus ARN/virología
10.
Commun Biol ; 3(1): 62, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047240

RESUMEN

African swine fever virus (ASFV), the aetiological agent of African swine fever (ASF), causes lethal haemorrhagic fever in domestic pigs with high mortality and morbidity and has devastating consequences on the global swine industry. On-site rapid and sensitive detection of ASFV is key to the timely implementation of control. In this study, we developed a rapid, sensitive and instrument-free ASFV detection method based on CRISPR/Cas12a technology and lateral flow detection (named CRISPR/Cas12a-LFD). The limit of detection of CRISPR/Cas12a-LFD is 20 copies of ASFV genomic DNA per reaction, and the detection process can be completed in an hour. The assay showed no cross-reactivity with other swine DNA viruses, and has 100% agreement with real-time PCR detection of ASFV in 149 clinical samples. Overall, the CRISPR/Cas12a-LFD method provides a novel alternative for the portable, simple, sensitive, and specific detection of ASFV and may contribute to the prevention and control of ASF outbreaks.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Sistemas CRISPR-Cas , Inmunoensayo , Tiras Reactivas , Fiebre Porcina Africana/virología , Animales , ADN Viral , Genoma Viral , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos
11.
J Nanobiotechnology ; 18(1): 7, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910833

RESUMEN

BACKGROUND: Antibodies are an important reagent to determine the specificity and accuracy of diagnostic immunoassays for various diseases. However, traditional antibodies have several shortcomings due to their limited abundance, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies, which are derived from single-chain camelid antibodies, can circumvent many of these limitations and, thus, appear to be a promising substitute. In the presented study, a sandwich ELISA-like immunoassay and direct fluorescent assay with high sensitivity, good specificity, and easy operation were the first time to develop for detecting porcine parvovirus (PPV). After screening PPV viral particles 2 (VP2) specific nanobodies, horseradish peroxidase (HRP) and enhanced green fluorescent protein (EGFP) fusions were derived from the nanobodies by recombinant technology. Finally, using the nanobody-HRP and -EGFP fusions as probes, the developed immunoassays demonstrate specific, sensitive, and rapid detection of PPV. RESULTS: In the study, five PPV-VP2 specific nanobodies screened from an immunised Bactrian camel were successfully expressed with the bacterial system and purified with a Ni-NTA column. Based on the reporter-nanobody platform, HRP and EGFP fusions were separately produced by transfection of HEK293T cells. A sandwich ELISA-like assay for detecting PPV in the samples was firstly developed using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusions as the detection antibody. The assay showed 92.1% agreement with real-time PCR and can be universally used to surveil PPV infection in the pig flock. In addition, a direct fluorescent assay using PPV-VP2-Nb12-EGFP fusion as a probe was developed to detect PPV in ST cells. The assay showed 81.5% agreement with real-time PCR and can be used in laboratory tests. CONCLUSIONS: For the first time, five PPV-VP2 specific nanobody-HRP and -EGFP fusions were produced as reagents for developing immunoassays. A sandwich ELISA-like immunoassay using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusion as the detection antibody was the first time to develop for detecting PPV in different samples. Results showed that the immunoassay can be universally used to surveil PPV infection in pig flock. A direct fluorescent assay using PPV-VP2-Nb12-EGFP as a probe was also developed to detect PPV in ST cells. The two developed immunoassays eliminate the use of commercial secondary antibodies and shorten detection time. Meanwhile, both assays display great developmental prospect for further commercial production and application.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Inmunoensayo , Parvovirus Porcino/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/metabolismo , Indicadores y Reactivos , Anticuerpos de Dominio Único/química , Proteínas Virales/inmunología
12.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894478

RESUMEN

Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells.IMPORTANCE The process of viral infection is centered around the interaction between the virus and host cells. Due to the lack of a highly effective cell culture system in vitro, there is little understanding about the interaction between avian HEV and its host cells. In this study, a total of seven host proteins were screened in chicken liver cells by a truncated avian HEV capsid protein (ap237) in which the host protein OATP1A2 interacted with ap237. Overexpression of OATP1A2 in the cells can promote ap237 adsorption as well as avian HEV adsorption and infection of the cells. When the function of OATP1A2 in cells was inhibited by substrates or inhibitors, attachment and infection by avian HEV significantly decreased. The distribution of OATP1A2 in different chicken tissues corresponded with that in tissues during avian HEV infection. This is the first finding that OATP1A2 is involved in viral infection of host cells.


Asunto(s)
Hepevirus/metabolismo , Transportadores de Anión Orgánico/metabolismo , Animales , Aniones/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Pollos/virología , Hepatitis E/virología , Virus de la Hepatitis E/metabolismo , Hepatitis Viral Animal/virología , Hepevirus/fisiología , Péptidos/metabolismo , Enfermedades de las Aves de Corral/virología , Proteínas Virales/metabolismo
13.
J Nanobiotechnology ; 17(1): 35, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823927

RESUMEN

BACKGROUND: Sensitive and specific antibodies can be used as essential probes to develop competitive enzyme-linked immunosorbent assay (cELISA). However, traditional antibodies are difficult to produce, only available in limited quantities, and ineffective as enzymatic labels. Nanobodies, which are single-domain antibodies (sdAbs), offer an alternative, more promising tool to circumvent these limitations. In the present work, a cELISA using nanobody-horseradish peroxidase (HRP) fusion protein firstly designed as a probe was developed for detecting anti-Newcastle disease virus (NDV) antibodies in chicken sera. RESULTS: In the study, a platform for the rapid and simple production of nanobody-HRP fusion protein was constructed. First, a total of 9 anti-NDV-NP protein nanobodies were screened from a immunised Bactrian camel. Then, the Nb5-HRP fusions were produced with the platform and used for the first time as sensitive reagents for developing cELISA to detect anti-NDV antibodies. The cut-off value of the cELISA was 18%, and the sensitivity and specificity were respectively 100% and 98.6%. The HI test and commercial ELISA kit (IDEXX) separately agreed 97.83% and 98.1% with cELISA when testing clinical chicken sera and both agreed 100% when testing egg yolks. However, for detecting anti-NDV antibodies in the sequential sera from the challenged chickens, cELISA demonstrated to be more sensitive than the HI test and commercial ELISA kit. Moreover, a close correlation (R2 = 0.914) was found between the percent competitive inhibition values of cELISA and HI titers. CONCLUSIONS: A platform was successfully designed to easily and rapidly produce the nanobody-HRP fusion protein, which was the first time to be used as reagents for establishing cELISA. Results suggest that the platform supports the development of a cELISA with high sensitivity, simplicity, and rapid detection of anti-NDV antibodies. Overall, we believe that the platform based on nanobody-HRP fusions can be widely used for future investigations and treatment other diseases and viruses.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática , Virus de la Enfermedad de Newcastle/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Anticuerpos Antivirales/aislamiento & purificación , Camelus , Pollos , Escherichia coli , Biblioteca de Genes , Células HEK293 , Peroxidasa de Rábano Silvestre/química , Humanos , Proteínas Recombinantes/química , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...